THE UNUSUAL CHEMICAL EQUILIBRIA F3S-SF = 2 SF₂ AND CF₃SF₂-SCF₃ = 2 CF₃SF

W. Gombler, A. Haas and H. Willner Lehrstuhl für Anorganische Chemie II Ruhr-Universität, D-4630 Bochum (BRD)

In order to understand more about the instability of sulfur difluoride, we have investigated the chemical interrelations between each of the monomers SF_2 and CF_3SF and the corresponding dimers F_3SSF and $CF_3SF_2SCF_3$. Thus we have found that SF_2 and CF_3SF exist in chemical equilibria with their dimers. These equilibria are unusual because they involve two different bonds (S-F and S-S). The equilibrium constants and dissociation enthalpies have been determined by i.r. and mass spectroscopic measurements.

(1) $F_3S-SF = 2 SF_2$ (1) $F_3S-SF = 2 SF_2$ (2) $CF_3SF_2-SCF_3 = 2 CF_3SF$ $AH_{298}^O = 68.5 kJ/mol$ $K_p(298) = 1.3 10^3 atm$ $\Delta H_{298}^O = 42.5 kJ/mol$

The equilibrium between F_3 SSF and SF₂ is disturbed by a decomposition reaction of these compounds yielding SF₄ and SSF₂. In both systems (1) and (2) the achievement of the

equilibrium is comparatively slow at -30 to 30 $^{\circ}$ C. The rates for dissociation and decomposition are strongly surface-dependent and the kinetics of the two processes have been studied separately. Under favorable conditions the half-lives at 298 K for the dissociation of F_3SSF and $CF_3SF_2SCF_3$ are found to be ca. 8 h and ca. 2 h, respectively, and for the decomposition of SF_2 to SF_4 and SSF_2 and CF_3SF to CF_3SF_3 and CF_3SSCF_3 (p=13 mbar) the values are ca. 10 h and 1 year respectively.